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@ Graphical models in exponential form

o A general form of neighbourhood regression
e Graph selection for Ising model

@ Graphs with corrupted or hidden variables

o Gaussian graph estimation with corrupted data
o Gaussian graph selection with hidden variables
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Graphical models in exponential form

@ Consider the graph estimation problem for a more general class of
graphical model in the exponential form:

por (x1,. -, xd) < exp a4 > ¢ (i OF) + Y bk (x5, Xk O)
jev (,k)EE

@ For instance, the Gaussian graphical model is a special case where
©F = 67 and ©j = ¢, with potential functions

5 (%5 07) = 075, bjwc (55, % O ) = 05

o Ising model: take values in the binary hypercube {0,1}9.
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Example: Potts model

e Each variable X; takes values in the discrete set {0,..., M —1}.
o Factorization form: ©7 = {©ja,a=1,...,M—1}isan

(M — 1)-vector, ©3 = {@fk;aba ab=1,....M— 1} is an

(M —=1) x (M —1) matrix.
@ The potential functions are

M-1

(bj (XJ'eJ*) = Z G)j;‘etl[)(J' = a]

a=1

and
M—-1M-1
¢Jk (XJ’Xk' ik e_]k abl [XJ ay Xk = b]
a=1 b=1

@ Generalization of the Ising model.
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Example: Poisson graphical model

Model (Xi,...,Xy) with count values Z; = {0,1,2,...}.
To build a graphical model, specify the conditional distribution of
each variable given its neighbors.

Suppose variable Xj, conditioned on its neighbors, is a Poisson
random variable with mean

pj =exp [ 07 + Z 0 Xk

keN(j)
@ Lead to a Markov radom field of the exponential form with
;i (xi 01*) =07x; —log(x!) foralljeV
bk (Xj,Xk; Gfk) = 07X Xk for all (j, k) € E
@ In order for the density to be normalizable, require J’-‘k <0 for all

(J, k) € E. The model can only capture competitive interactions
between variables.
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A general form of neighborhood regression

@ Consider the conditional likelihood of X; € R" given
X\{j} e R™(4=1) which only depends on

O©jy =1{9;,0jk, k € V\{J}}

@ Observation: in the true model ©*, we have @J’-‘k = 0 whenever
(k) ¢ E.
@ Impose some type of block-based sparsity penalty on ©; .

@ General form of neighborhood regression:

~ ) 1<
ej+ = arg rgln { —; Z |ng@j+ (X,'j ‘ X,-\{J'}) +An Z H‘ejkm}
J* i=1 keVA\(j}

Ln(©)+ix5.2 (5 )

@ Frobenius norm, a general form of the group Lasso.
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Graph selection for Ising models

@ Recall the Ising distribution is over binary variables
po+ (x1,...,Xq) X exp ZGJ*XJ + Z Ok Xj Xk
jev U,k)eE
@ For any node j € V, define
O+ =10, 05, k € VA{j}}
@ The neighborhood regression reduced to a form of logistic regression

0J+_arg m|n { Zf<9Xu+ Z QJkXUX:k)+)\ Z |91k|}

keV\({j} ke V\(j}

L"(OJJr'XJ 2\0))

where f(t) = log (1 + e?) is the logistic function.
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Conditions for the consistency under Ising models

@ Under what conditions does the estimate recover the correct
neighborhood set A/(j)? Limit the influence of irrelevant
variables—those outside A/ (j)—on variables inside the set.

o Let 9f+ be the minimizer of the population objective function
L(0j+) =E [Ln (013 X5 X\(11)].
@ Hessian of the cost function J := V2L(6%,).

o J satisfies an a-incoherence condition at j € V' if
maXHJks (Jss)ilH <l—-«
k¢S 1

@ The submatrix Jss has its smallest eigenvalue lower bounded by some
Cmin > 0.

A graph G with d vertices and maximum degree at most m.
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Consistency for Ising models

Theorem (11.15)

Given n i.i.d. samples with n > coym? log d, consider the estimator in the
above neighborhood regression with A\, = %\/% + ¢ for some § € [0,1].
Then with probability at least 1 —cle_c2("‘s2+'°g d), the estimate §j+ has
the following properties:

(a) It has a support S = supp(f) that is contained within the
neighborhood set N(j).

(b) It satisfies the loo-bound |01 — 0%, oo < <v/mA,.

Cmin

e Part (a) guarantees that the method leads to no false inclusions.

@ The lo-bound in part (b) ensures that the method picks up all
significant variables.

@ The proof is based on the same type of primal-dual witness
construction used in the proof of Theorem 11.12.
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Graphs with corrupted or hidden variables

@ Thus far, we have assumed that the samples {x;}7_, are observed

perfectly.
@ This idealized setting can be violated in a number of ways:
e The samples may be corrupted by some type of measurement noise, or
certain entries may be missing.
o In the most extreme case, some subset of the variables are never
observed, and so are known as hidden or latent variables.

@ We focus primarily on the Gaussian case for simplicity.
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Gaussian graph estimation with corrupted data

@ Suppose we observe Z = X + V, where the matrix V represents some
type of measurement error.

@ The naive approach (graphical Lasso) would be to solve the convex
program:

Exar=arg_min {(©.:)) ~logdet® + An[[O]] o |

where &, = 1777 = 15" | 72T is now the sample covariance based

on the observed data matrix Z.

@ Exercise 11.8: the addition of noise does not preserve Markov
properties, so that the estimate ©yxa1 will not lead to consistent
estimates of either the edge set, or the underlying precision matrix ©*.

@ We need to replace ¥, with an unbiased estimator of cov(x) based on
the observed data matrix Z.

Yangjianchen Xu (Department of BiostatisticHDS28 - Graphical models in exponential forr 10/01/2021 11/32



Unbiased covariance estimate for additive corruptions

@ Suppose that each row v; of the noise matrix V is drawn i.i.d. from a
zero-mean distribution with covariance X, .

@ In this case, a natural estimate of ¥, := cov(x) is given by
= 1
r=-z'z2-%,
n

o T is an unbiased estimate of 2« as long as the noise matrix V is
independent of X.

@ When both X and V have sub-Gaussian rows, a deviation condition of
the form HF— Y llmax 3 % holds with high probability. (Exercise
11.12)

Yangjianchen Xu (Department of BiostatisticHDS28 - Graphical models in exponential forr 10/01/2021 12 /32



@ Some entries of the data matrix X might be missing.

@ In the simplest model-missing completely at random (MCAR)-entry
(7,j) of the data matrix is missing with some probability v € [0, 1).

o We can construct a new matrix Z € R"*9 with entries

5 fj‘, if entry (i,/) is observed
Z; = .
0 otherwise

@ With this choice, it can be verified that
PO PO e
F==-7"Z — vdiag(Z"Z/n)
n

is an unbiased estimate of the covariance matrix ¥, = cov(x).
@ Under suitable tail conditions, it also satisfies the deviation condition
IT = Zllmax = 1/ '8¢ with high probability. (Exercise 11.13)

n
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Correcting the Gaussian graphical Lasso

@ Any unbiased estimate T of 2 defines a form of the corrected
graphical Lasso estimator

& =arg_min {((0,7)) ~ logdet® + A ||, o

ocsd*d

@ Depending on the nature of the covariance estimate T, the program
may not have any solution.

@ Exercise 11.9: as long as A\, > ||l — Xx||max, this optimization
problem has a unique optimum that is achieved.

@ Moreover, by inspecting the proofs of the claims in Section 11.2.1, it
can be seen that the estimator © obeys similar Frobenius norm and
edge selection bounds as the usual graphical Lasso.
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Correcting neighborhood regression

@ Use X to denote the n x (d — 1) matrix with {X, k € V\{j}} as its
columns, and use y = X to denote the response vector.

@ With this notation, we have an instance of a corrupted linear
regression model:

y=X0"+w and Z~Q(|X),

where the conditional probability distribution @Q varies according to
the nature of the corruption.

@ The response vector y might also be further corrupted, but this case
can often be reduced to an instance of the previous model.
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Correcting neighborhood regression

@ The naive approach would be simply to solve a least-squares problem
involving the cost function 4[|y — Z6||3.

@ Exercise 11.10: doing so will lead to an inconsistent estimate of the
neighborhood regression vector 6*.

@ Question: what types of quantities need to be "corrected” in order to
obtain a consistent form of linear regression?

@ Consider the following population-level objective function
— 1
£(6) = 5676~ (6.7),

where I' := cov(x) and v := cov(x, y). By construction, the true
regression vector is the unique global minimizer of L.
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Correcting neighborhood regression

@ Thus, a natural strategy is to solve a penalized regression problem in

which the pair (v, I) are replaced by data-dependent estimates (7, T).
@ Doing so leads to the empirical objective function

£4(6) = 567T0 ~ (0.7),

where the estimates (7, ) must be based on the observed data (y, Z).
@ We are led to study the following corrected Lasso estimator

1 m
min {eTre —(7,0) + >\,,||9H1}

101:<\/ o84
@ In the high-dimensional regime (n < d), the previously described

choices of I given have negative eigenvalues. The constrain
10]l1 < |/ 1oga is actually needed when the objective function L () is

non-convex. (Exercise 11.11)
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Non-convex problem: local optima

@ A local optimum for the previous program is any vector 6 € RY such
that

n

0),0 — 6) > < :
(VLp(0),0 —0) >0 for all 6 such that ||0]1 < log d

@ Under suitable conditions, any local optimum is relatively close to the
true regression vector.

@ Restricted eigenvalue (RE) condition: assume that there exists a
constant k > 0 such that

Iog d

(A, TA) > k[|A|3 - |A|2 forall A cRY
@ Assume that the minimizer 6* of E_(O) has sparsity s and {>-norm at
most 1, and that n > slog d. These assumptions ensure that

0% < /s <, /Toga» SO that 6" is feasible for the non-convex Lasso.
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Theoretical results of local optima

Proposition (11.18)

Under the RE condition, suppose that the pair (7,T") satisfy the deviation

condition

log d (1)

for a pre-factor ¢(Q, o,,) depending on the conditional distribution Q and
noise standard deviation o,,. Then for any regularization parameter

An > 2(2c0 + ¢(Q, 0w))/ 22, any local optimum 0 to the corrected
Lasso program satisfies the bound

IT6" = Fl[max < ¢ (Q,0w)

~ . 2
16 = 6%ll2 < —/sAn. (2)

v

Observe that VL (6*) = I'6* — v = 0. Condition (1) is the sample-based
and approximate equivalent of this optimality condition.
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Proof of Proposition 11.18

Proof. We prove this result in the special case when the optimum occurs
in the interior of the set [|0][1 < | /j5gg- In this case, any local optimum 6

must satisfy the condition VE,,(@ 4+ Az =0, where z belongs to the
subdifferential of the £1-norm at 6. Define the error vector A := 6 —/\9*.
Adding and subtracting terms and then taking inner products with A
yields the inequality

(ATA) = (A, VL0 + A) — VL, (7))
< (A, VL, (0°)] = Mn(Z. D)

< Al VL (6o + Aad 167111 = 161123,

where we have used the facts that (Z,6) = [|0||; and (Z,6%) < 164 -
From the proof of Theorem 7.8, since the vector 6* is S-sparse, we have

1671, = 16llx < [[As[l = [|Ase s
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Proof of Proposition 11.18 (cont.)

Since VL,(0) = 6 — 7, the deviation condition (1) is equivalent to the
bound
log d

)
n

VLA (0o < ¢ (Q,0w)

which is less than \,/2 by our choice of regularization parameter.
Consequently, we have

PSS TP ~ ~ 3.~ 1.~
(B,FB) < Z20AlL + Mo lBsll — 185} = SAnlBsll = hallBsell
(3)

Since 0* is s-sparse, we have ||0*||; < +/s5|6%|, < fogq Where the final

inequality follows from the assumption that n > slog d. Consequently, we

have
—~ -~ n
All; < |6 0%, <2,/ —
R A e
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Proof of Proposition 11.18 (cont.)

Combined with the RE condition, we have

-~ Iog
NN

1Al

Recombining with our earlier bound (3), we have

~ d ~ 3. .2 1.~
kA3 < 2co 1A+ 5Anl[Asll = SAnllAs]ly

1 ~ 3. % 1 ~
< S0l + Al Bsll = SAallBsell
= 2[5l

Since ||As|l1 < v/5||All2, the claim follows.
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Gaussian graph selection with hidden variables

@ In certain settings, a given set of random variables might not be
accurately described using a sparse graphical model on their own, but
can be when augmented with an additional set of hidden variables.

@ For instance, the random variables X; = Shoe size and Xy = Gray
hair are likely to be dependent: few children have gray hair.

@ However, it might be reasonable to model them as being conditionally
independent given a third variable-namely X5 = Age.
o Consider a family of d + r random variables X :=
(X1, ..y Xd, Xg41, - - -, Xd+r) and suppose that this full vector can be
modeled by a sparse graphical model with d + r vertices.
o Observed variables: the subvector Xo = (Xi,..., Xy)
o Hidden variables: Xy := (Xy+1,- .-, Xg+r)
@ Given this partial information, our goal is to recover useful
information about the underlying graph.
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Matrix-theoretic formulation for the Gaussian case

o Let (), denote the covariance matrix of X,. ©° is the inverse
covariance matrix of the full vector X = (Xo, Xi), which can be
written in the block-partitioned form

0° = [ 9% Son }
©ho ©un
@ By the block-matrix inversion formula,

(ZH0) ! =080 — Oy (Ofim) " Ofio -

-~

* A*

@ By our modeling assumptions, the matrix [* := ©g5 is sparse and
N = 02y (O%) 1 ©%o has rank at most min{r, d}.

@ If r is substantially less than d, the inverse covariance matrix can be
decomposed as the sum of a sparse and a low-rank matrix.
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Matrix-theoretic formulation for the Gaussian case

@ Suppose x; € RY (i =1,...,n) are i.i.d. samples from a zero-mean
Gaussian with covariance . We require n > d due to the absence
of any sparsity in the low-rank component.

@ When n > d, the sample covariance matrix ¥ = %E?:l x,-x,-T will be

invertible with high probability, and hence setting Y := (X)~!, we can

consider an observation model of the form
Y=T*"—AN"+W

Here W € R9%9 is a stochastic noise matrix.
@ A very simple two-step estimator:

Fr=7,(2)") and A:=T—(2)7",

where the hard-thresholding operator is given by
T,,(v) = vl[|v|] > vp] and v, > 0 to be chosen.
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Assumptions and choice of v,

@ As with our earlier study of matrix decompositions in Section 10.7, we
assume here that the low-rank component satisfies a " spikiness”

constraint: [[A*|| . < 5

@ In addition, we assume that the matrix square root of the true
precision matrix ©* = * — A* has a bounded /,,-operator norm:

J 20ty

d
* — ., <
IVl = x5 V&l < Vi

@ In terms of the parameters («, M), we then choose the threshold
parameter v, in our estimates as

log d
Ve =M | 4 B 5]+ 2 for some ¢ € [0, 1]
n d
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Theoretical results of the two-step estimator

Proposition (11.19)

Consider a precision matrix ©* that can be decomposed as the difference
™ — A*, where [* has most s non-zero entries per row, and N\* is a--spiky.
Given n > d i.i.d. samples from the N'(0,(©*)~ ) distribution and any

§ € (0,1], the estimates (T, \) satisfy the bounds

IF = Tl max < 2M (4 SRS 5) 25‘ (4)
and
N * d r *
1A= A"l < M (2\/:+5> + 8[| = T [lmax (5)

—cnd?

with probability at least 1 — cie
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Proof of Proposition 11.19

Proof. We first prove that the inverse sample covariance matrix
Y := (X)!is itself a good estimate of ©*, in the sense that, for all

0 €(0,1],
. d
I - &l < M (2[ + 5> (©)
and
N log d
“Y -0 Hmax S M (4 n + 5) (7)

with probability at least 1 — cle—c2“52_
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Proof of Proposition 11.19 (cont.)

To prove the first bound (6), we note that
) -e =ver {[nrtViv -1} vVeor (8)

where V € R"™*? is a standard Gaussian random matrix. Consequently, by
sub-multiplicativity of the operator norm, we have

)~ = €7l < VOl lln™ VIV — lall,fIlver|l,
= (1ol VIV — Kl

. d
< lje"ll, (2[ ' 5) ,

where the final inequality holds with probability 1 — cle_”52, via an
application of Theorem 6.1. To complete the proof, we note that

197l < 1167l < (IIVO*[le)* < M

from which the bound (6) follows.
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Proof of Proposition 11.19 (cont.)

Turning to the bound (7), using the decomposition (8) and introducing
the shorthand ¥ = VTTV — lg, we have

[(£) 7~ Ol = max | VETEVETe|
SjleaXdee*ejHllliV@*ekHoo

)

< ||iHmaxj_”1‘3Xd v @*ejH%.

Now observe that

d
e IVOrgla < max [VO*ull = max, > [VOTl = VOl
==1,... ujj1= =d1,... k—1

This yields that [[(£)™! — ©*|lmax < M||%||max. We have

1 |l max < 44/ % + & with probability at least 1 — c;e=2"” for all
0 € [0,1]. This completes the proof of the bound (7).
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Proof of Proposition 11.19 (cont.)

o~

Next we establish bounds on the estimates (T, A) defined in
r=T7,(2)) and A=T-(%)L

Recalling our shorthand Y = (£)~1, by the definition of T and the triangle
inequality, we have

IF = T llmax < 1Y = © lmax + 1Y = Tuu(V)llmax + A" |max

§M<4 logd+5>+vn+a
n d

<2M (4 Iogd+5) L
n d

thereby establishing inequality (4).
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Proof of Proposition 11.19 (cont.)

Turning to the operator norm bound, the triangle inequality implies that

I . S d S
A=Al <Y =%l +IF =T, <M (2\[n+5> + I =T,

Recall that '™ has at most s-non-zero entries per row. For any index (J, k)
such that '} =0, we have ©% = A%, and hence

Yl < | Yik — O3] + |Nk] SM(4 Iogd+5> +%§vn

n

Consequently Ty = T,, (Yjx) = 0 by construction. Therefore, the error
matrix [ — ' has at most s non-zero entries per row, whence

d
7=l < 7= Pl = g, 3 U= Tl < 7 =
Y k=1

Putting together the pieces yields the claimed bound (5).
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