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Graphical models in exponential form

Consider the graph estimation problem for a more general class of
graphical model in the exponential form:

pΘ∗ (x1, . . . , xd) ∝ exp

∑
j∈V

φj
(
xj ; Θ∗j

)
+
∑

(j ,k)∈E

φjk
(
xj , xk ; Θ∗jk

) .

For instance, the Gaussian graphical model is a special case where
Θ∗j = θ∗j and Θ∗jk = θ∗jk with potential functions

φj
(
xj ; θ

∗
j

)
= θ∗j xj , φjk

(
xj , xk ; θ∗jk

)
= θ∗jkxjxk .

Ising model: take values in the binary hypercube {0, 1}d .
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Example: Potts model

Each variable Xs takes values in the discrete set {0, . . . ,M − 1}.
Factorization form: Θ∗j = {Θj ;a, a = 1, . . . ,M − 1} is an

(M − 1)-vector, Θ∗jk =
{

Θ∗jk;ab, a, b = 1, . . . ,M − 1
}

is an

(M − 1)× (M − 1) matrix.

The potential functions are

φj
(
xj ; Θ∗j

)
=

M−1∑
a=1

Θ∗j ;aI [xj = a]

and

φjk
(
xj , xk ; Θ∗jk

)
=

M−1∑
a=1

M−1∑
b=1

Θ∗jk,abI [xj = a, xk = b]

Generalization of the Ising model.
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Example: Poisson graphical model

Model (X1, . . . ,Xd) with count values Z+ = {0, 1, 2, . . .}.
To build a graphical model, specify the conditional distribution of
each variable given its neighbors.

Suppose variable Xj , conditioned on its neighbors, is a Poisson
random variable with mean

µj = exp

θ∗j +
∑

k∈N (j)

θ∗jkxk


Lead to a Markov radom field of the exponential form with

φj
(
xj ; θ

∗
j

)
= θ∗j xj − log(x!) for all j ∈ V

φjk
(
xj , xk ; θ∗jk

)
= θ∗jkxjxk for all (j , k) ∈ E

In order for the density to be normalizable, require θ∗jk ≤ 0 for all
(j , k) ∈ E . The model can only capture competitive interactions
between variables.
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A general form of neighborhood regression

Consider the conditional likelihood of Xj ∈ Rn given
X\{j} ∈ Rn×(d−1), which only depends on

Θj+ := {Θj ,Θjk , k ∈ V \{j}}

Observation: in the true model Θ∗, we have Θ∗jk = 0 whenever
(j , k) /∈ E .

Impose some type of block-based sparsity penalty on Θj+.

General form of neighborhood regression:

Θ̂j+ = arg min
Θj+

{
−1

n

n∑
i=1

log pΘj+

(
xij | xi\{j}

)
︸ ︷︷ ︸

Ln(Θj+;xj ,x\{j})

+λn
∑

k∈V \〈j}

|||Θjk |||

}

Frobenius norm, a general form of the group Lasso.
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Graph selection for Ising models

Recall the Ising distribution is over binary variables

pθ∗ (x1, . . . , xd) ∝ exp

∑
j∈V

θ∗j xj +
∑

(j ,k)∈E

θ∗jkxjxk


For any node j ∈ V , define

θj+ := {θj , θjk , k ∈ V \{j}}

The neighborhood regression reduced to a form of logistic regression

θ̂j+ = arg min
θj+∈Rd

{
1

n

n∑
i=1

f
(
θjxij +

∑
k∈V \〈j}

θjkxijxik

)
︸ ︷︷ ︸

Ln(θj+;xj ,x\{j})

+λn
∑

k∈V \〈j}

|θjk |

}
,

where f (t) = log (1 + et) is the logistic function.
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Conditions for the consistency under Ising models

Under what conditions does the estimate recover the correct
neighborhood set N (j)? Limit the influence of irrelevant
variables–those outside N (j)–on variables inside the set.

Let θ∗j+ be the minimizer of the population objective function

L (θj+) = E
[
Ln
(
θj+;Xj ,X\{j}

)]
.

Hessian of the cost function J := ∇2L(θ∗j+).

J satisfies an α-incoherence condition at j ∈ V if

max
k /∈S

∥∥∥JkS (JSS)−1
∥∥∥

1
6 1− α

The submatrix JSS has its smallest eigenvalue lower bounded by some
cmin > 0.

A graph G with d vertices and maximum degree at most m.
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Consistency for Ising models

Theorem (11.15)

Given n i.i.d. samples with n > c0m
2 log d , consider the estimator in the

above neighborhood regression with λn = 32
α

√
log d
n + δ for some δ ∈ [0, 1].

Then with probability at least 1 −c1e
−c2(nδ2+log d), the estimate θ̂j+ has

the following properties:

(a) It has a support Ŝ = supp(θ̂) that is contained within the
neighborhood set N (j).

(b) It satisfies the `∞-bound ‖θ̂j+ − θ∗j+‖∞ ≤
c3
cmin

√
mλn.

Part (a) guarantees that the method leads to no false inclusions.

The `∞-bound in part (b) ensures that the method picks up all
significant variables.

The proof is based on the same type of primal–dual witness
construction used in the proof of Theorem 11.12.
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Graphs with corrupted or hidden variables

Thus far, we have assumed that the samples {xi}ni=1 are observed
perfectly.

This idealized setting can be violated in a number of ways:

The samples may be corrupted by some type of measurement noise, or
certain entries may be missing.
In the most extreme case, some subset of the variables are never
observed, and so are known as hidden or latent variables.

We focus primarily on the Gaussian case for simplicity.
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Gaussian graph estimation with corrupted data

Suppose we observe Z = X + V, where the matrix V represents some
type of measurement error.

The naive approach (graphical Lasso) would be to solve the convex
program:

Θ̂NAI = arg min
Θ∈Sd×d

{
〈〈Θ, Σ̂z〉〉 − log det Θ + λn|||Θ|||1,off

}
,

where Σ̂z = 1
nZTZ = 1

n

∑n
i=1 ziz

T
i is now the sample covariance based

on the observed data matrix Z.

Exercise 11.8: the addition of noise does not preserve Markov
properties, so that the estimate Θ̂NAI will not lead to consistent
estimates of either the edge set, or the underlying precision matrix Θ∗.

We need to replace Σ̂z with an unbiased estimator of cov(x) based on
the observed data matrix Z.
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Unbiased covariance estimate for additive corruptions

Suppose that each row vi of the noise matrix V is drawn i.i.d. from a
zero-mean distribution with covariance Σv .

In this case, a natural estimate of Σx := cov(x) is given by

Γ̂ :=
1

n
ZTZ− Σv

Γ̂ is an unbiased estimate of Σx as long as the noise matrix V is
independent of X.

When both X and V have sub-Gaussian rows, a deviation condition of

the form ‖Γ̂− Σx‖max -
√

log d
n holds with high probability. (Exercise

11.12)
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Missing data

Some entries of the data matrix X might be missing.

In the simplest model–missing completely at random (MCAR)–entry
(i , j) of the data matrix is missing with some probability v ∈ [0, 1).

We can construct a new matrix Z̃ ∈ Rn×d with entries

Z̃ij =

{
Zij

1−v if entry (i , j) is observed

0 otherwise

With this choice, it can be verified that

Γ̂ =
1

n
Z̃TZ̃− v diag(Z̃TZ̃/n)

is an unbiased estimate of the covariance matrix Σx = cov(x).

Under suitable tail conditions, it also satisfies the deviation condition

‖Γ̂− Σx‖max -
√

log d
n with high probability. (Exercise 11.13)
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Correcting the Gaussian graphical Lasso

Any unbiased estimate Γ̂ of Σx defines a form of the corrected
graphical Lasso estimator

Θ̃ = arg min
Θ∈Sd×d

+

{
〈〈Θ, Γ̂〉〉 − log det Θ + λn|||Θ|||1,off

}
Depending on the nature of the covariance estimate Γ̂, the program
may not have any solution.

Exercise 11.9: as long as λn > ‖Γ̂− Σx‖max, this optimization
problem has a unique optimum that is achieved.

Moreover, by inspecting the proofs of the claims in Section 11.2.1, it
can be seen that the estimator Θ̃ obeys similar Frobenius norm and
edge selection bounds as the usual graphical Lasso.
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Correcting neighborhood regression

Use X to denote the n × (d − 1) matrix with {Xk , k ∈ V \{j}} as its
columns, and use y = Xj to denote the response vector.

With this notation, we have an instance of a corrupted linear
regression model:

y = Xθ∗ + w and Z ∼ Q(· | X),

where the conditional probability distribution Q varies according to
the nature of the corruption.

The response vector y might also be further corrupted, but this case
can often be reduced to an instance of the previous model.
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Correcting neighborhood regression

The naive approach would be simply to solve a least-squares problem
involving the cost function 1

2n‖y − Zθ‖2
2.

Exercise 11.10: doing so will lead to an inconsistent estimate of the
neighborhood regression vector θ∗.

Question: what types of quantities need to be ”corrected” in order to
obtain a consistent form of linear regression?

Consider the following population-level objective function

L(θ) =
1

2
θTΓθ − 〈θ, γ〉,

where Γ := cov(x) and γ := cov(x , y). By construction, the true
regression vector is the unique global minimizer of L.
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Correcting neighborhood regression

Thus, a natural strategy is to solve a penalized regression problem in
which the pair (γ, Γ) are replaced by data-dependent estimates (γ̂, Γ̂).

Doing so leads to the empirical objective function

Ln(θ) =
1

2
θTΓ̂θ − 〈θ, γ̂〉,

where the estimates (γ̂, Γ̂) must be based on the observed data (y ,Z).

We are led to study the following corrected Lasso estimator

min
‖θ‖1≤

√
n

log d

{
1

2
θTΓ̂θ − 〈γ̂, θ〉+ λn‖θ‖1

}

In the high-dimensional regime (n < d), the previously described
choices of Γ̂ given have negative eigenvalues. The constrain

‖θ‖1 ≤
√

n
log d is actually needed when the objective function Ln(θ) is

non-convex. (Exercise 11.11)
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Non-convex problem: local optima

A local optimum for the previous program is any vector θ̃ ∈ Rd such
that

〈∇Ln(θ̃), θ − θ̃〉 ≥ 0 for all θ such that ‖θ‖1 ≤
√

n

log d
.

Under suitable conditions, any local optimum is relatively close to the
true regression vector.

Restricted eigenvalue (RE) condition: assume that there exists a
constant κ > 0 such that

〈∆, Γ̂∆〉 ≥ κ‖∆‖2
2 − c0

log d

n
‖∆‖2

1 for all ∆ ∈ Rd

Assume that the minimizer θ∗ of L̄(θ) has sparsity s and `2-norm at
most 1, and that n ≥ s log d . These assumptions ensure that

‖θ∗‖1 ≤
√
s ≤

√
n

log d , so that θ∗ is feasible for the non-convex Lasso.
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Theoretical results of local optima

Proposition (11.18)

Under the RE condition, suppose that the pair (γ̂, Γ̂) satisfy the deviation
condition

‖Γ̂θ∗ − γ̂‖max ≤ ϕ (Q, σw )

√
log d

n
(1)

for a pre-factor ϕ(Q, σw ) depending on the conditional distribution Q and
noise standard deviation σw . Then for any regularization parameter

λn ≥ 2 (2c0 + ϕ(Q, σw ))
√

log d
n , any local optimum θ̃ to the corrected

Lasso program satisfies the bound

‖θ̃ − θ∗‖2 ≤
2

κ

√
sλn. (2)

Observe that ∇L (θ∗) = Γθ∗ − γ = 0. Condition (1) is the sample-based
and approximate equivalent of this optimality condition.
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Proof of Proposition 11.18

Proof. We prove this result in the special case when the optimum occurs

in the interior of the set ‖θ‖1 ≤
√

n
log d . In this case, any local optimum θ̃

must satisfy the condition ∇Ln(θ̃) + λnẑ = 0, where ẑ belongs to the
subdifferential of the `1-norm at θ̃. Define the error vector ∆̂ := θ̃ − θ∗.
Adding and subtracting terms and then taking inner products with ∆̂
yields the inequality

〈∆̂, Γ̂∆̂〉 = 〈∆̂,∇Ln(θ∗ + ∆̂)−∇Ln (θ∗)〉

≤ |〈∆̂,∇Ln (θ∗)〉| − λn〈ẑ , ∆̂〉

≤ ‖∆̂‖1 ‖∇Ln (θ∗)‖∞ + λn{‖θ∗‖1 − ‖θ̃‖1},

where we have used the facts that 〈ẑ , θ̃〉 = ‖θ̃‖1 and 〈ẑ , θ∗〉 ≤ ‖θ∗‖1 .
From the proof of Theorem 7.8, since the vector θ∗ is S-sparse, we have

‖θ∗‖1 − ‖θ̃‖1 ≤ ‖∆̂S‖1 − ‖∆̂Sc‖1.
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Proof of Proposition 11.18 (cont.)

Since ∇Ln(θ) = Γ̂θ − γ̂, the deviation condition (1) is equivalent to the
bound

‖∇Ln (θ∗)‖∞ ≤ ϕ (Q, σw )

√
log d

n
,

which is less than λn/2 by our choice of regularization parameter.
Consequently, we have

〈∆̂, Γ̂∆̂〉 ≤ λn
2
‖∆̂‖1 + λn{‖∆̂S‖1 − ‖∆̂Sc‖1} =

3

2
λn‖∆̂S‖1 −

1

2
λn‖∆̂Sc‖1

(3)

Since θ∗ is s-sparse, we have ‖θ∗‖1 ≤
√
s ‖θ∗‖2 ≤

√
n

log d , where the final

inequality follows from the assumption that n ≥ s log d . Consequently, we
have

‖∆̂‖1 ≤ ‖θ̂‖1 + ‖θ∗‖1 ≤ 2

√
n

log d
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Proof of Proposition 11.18 (cont.)

Combined with the RE condition, we have

〈∆̂, Γ̂∆̂〉 ≥ κ‖∆̂‖2
2 − c0

log d

n
‖∆̂‖2

1 ≥ κ‖∆̂‖2
2 − 2c0

√
log d

n
‖∆̂‖1

Recombining with our earlier bound (3), we have

κ‖∆̂‖2
2 ≤ 2c0

√
log d

n
‖∆̂‖1 +

3

2
λn‖∆̂S‖1 −

1

2
λn‖∆̂S‖1

≤ 1

2
λn‖∆̂‖1 +

3

2
λn‖∆̂S‖1 −

1

2
λn‖∆̂Sc‖1

= 2λn‖∆̂S‖1

Since ‖∆̂S‖1 ≤
√
s‖∆̂‖2, the claim follows.
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Gaussian graph selection with hidden variables

In certain settings, a given set of random variables might not be
accurately described using a sparse graphical model on their own, but
can be when augmented with an additional set of hidden variables.

For instance, the random variables X1 = Shoe size and X2 = Gray
hair are likely to be dependent: few children have gray hair.

However, it might be reasonable to model them as being conditionally
independent given a third variable-namely X3 = Age.

Consider a family of d + r random variables X :=
(X1, . . . ,Xd ,Xd+1, . . . ,Xd+r ) and suppose that this full vector can be
modeled by a sparse graphical model with d + r vertices.

Observed variables: the subvector XO := (X1, . . . ,Xd)
Hidden variables: XH := (Xd+1, . . . ,Xd+r )

Given this partial information, our goal is to recover useful
information about the underlying graph.
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Matrix-theoretic formulation for the Gaussian case

Let Σ∗OO denote the covariance matrix of Xo. Θ◦ is the inverse
covariance matrix of the full vector X = (XO,XH), which can be
written in the block-partitioned form

Θ◦ =

[
Θ◦OO Θ◦OH

Θ◦HO Θ◦HH

]
By the block-matrix inversion formula,

(Σ∗OO)−1 = Θ�OO︸︷︷︸
Γ∗

−Θ�OH (Θ�HH)−1 Θ�HO︸ ︷︷ ︸
Λ∗

.

By our modeling assumptions, the matrix Γ∗ := Θ◦OO is sparse and
Λ∗ := Θ◦OH (Θ◦HH)−1 Θ◦HO has rank at most min{r , d}.
If r is substantially less than d , the inverse covariance matrix can be
decomposed as the sum of a sparse and a low-rank matrix.
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Matrix-theoretic formulation for the Gaussian case

Suppose xi ∈ Rd (i = 1, . . . , n) are i.i.d. samples from a zero-mean
Gaussian with covariance Σ∗OO. We require n > d due to the absence
of any sparsity in the low-rank component.

When n > d , the sample covariance matrix Σ̂ = 1
n

∑n
i=1 xix

T
i will be

invertible with high probability, and hence setting Y := (Σ̂)−1, we can
consider an observation model of the form

Y = Γ∗ − Λ∗ + W

Here W ∈ Rd×d is a stochastic noise matrix.

A very simple two-step estimator:

Γ̂ := Tvn((Σ̂)−1) and Λ̂ := Γ̂− (Σ̂)−1,

where the hard-thresholding operator is given by
Tvn(v) = vI [|v | > vn] and vn > 0 to be chosen.
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Assumptions and choice of vn

As with our earlier study of matrix decompositions in Section 10.7, we
assume here that the low-rank component satisfies a ”spikiness”
constraint: ‖Λ∗‖max ≤

α
d .

In addition, we assume that the matrix square root of the true
precision matrix Θ∗ = Γ∗ − Λ∗ has a bounded `∞-operator norm:

|||
√

Θ∗|||∞ = max
j=1,...,d

d∑
k=1

|
√

Θ∗|jk ≤
√
M

In terms of the parameters (α,M), we then choose the threshold
parameter vn in our estimates as

vn := M

(
4

√
log d

n
+ δ

)
+
α

d
for some δ ∈ [0, 1]
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Theoretical results of the two-step estimator

Proposition (11.19)

Consider a precision matrix Θ∗ that can be decomposed as the difference
Γ∗ − Λ∗, where Γ∗ has most s non-zero entries per row, and Λ∗ is α-spiky.
Given n > d i.i.d. samples from the N (0, (Θ∗)−1) distribution and any
δ ∈ (0, 1], the estimates (Γ̂, Λ̂) satisfy the bounds

‖Γ̂− Γ∗‖max ≤ 2M

(
4

√
log d

n
+ δ

)
+

2α

d
(4)

and

|||Λ̂− Λ∗|||2 ≤ M

(
2

√
d

n
+ δ

)
+ s‖Γ̂− Γ∗‖max (5)

with probability at least 1− c1e
−c2nδ2

.
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Proof of Proposition 11.19

Proof. We first prove that the inverse sample covariance matrix
Y := (Σ̂)−1 is itself a good estimate of Θ∗, in the sense that, for all
δ ∈ (0, 1],

|||Y −Θ∗|||2 ≤ M

(
2

√
d

n
+ δ

)
(6)

and

‖Y −Θ∗‖max ≤ M

(
4

√
log d

n
+ δ

)
(7)

with probability at least 1− c1e
−c2nδ2

.

Yangjianchen Xu (Department of Biostatistics University of North Carolina at Chapel Hill)HDS28 - Graphical models in exponential form and with corrupted or hidden variables10/01/2021 28 / 32



Proof of Proposition 11.19 (cont.)

To prove the first bound (6), we note that

(Σ̂)−1 −Θ∗ =
√

Θ∗
{
n−1VTV − Id

}√
Θ∗ (8)

where V ∈ Rn×d is a standard Gaussian random matrix. Consequently, by
sub-multiplicativity of the operator norm, we have

|||(Σ̂)−1 −Θ∗|||2 ≤ |||
√

Θ∗|||2|||n
−1VTV − Id |||2|||

√
Θ∗|||2

= |||Θ∗|||2|||n
−1VTV − Id |||2

≤ |||Θ∗|||2

(
2

√
d

n
+ δ

)
,

where the final inequality holds with probability 1− c1e
−nδ2

, via an
application of Theorem 6.1. To complete the proof, we note that

|||Θ∗|||2 ≤ |||Θ
∗|||∞ ≤ (|||

√
Θ∗|||∞)2 ≤ M

from which the bound (6) follows.
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Proof of Proposition 11.19 (cont.)

Turning to the bound (7), using the decomposition (8) and introducing

the shorthand Σ̃ = VTV
n − Id , we have

‖(Σ̂)−1 −Θ∗‖max = max
j ,k=1,...,d

∣∣∣eT
j

√
Θ∗Σ̃
√

Θ∗ek

∣∣∣
≤ max

j ,k=1,...,d
‖
√

Θ∗ej‖1‖Σ̃
√

Θ∗ek‖∞

≤ ‖Σ̃‖max max
j=1,...,d

‖
√

Θ∗ej‖2
1.

Now observe that

max
j=1,...,d

‖
√

Θ∗ej‖1 ≤ max
‖u‖1=1

‖
√

Θ∗u‖1 = max
l=1,...,d

d∑
k=1

|[
√

Θ∗]|kl = |||
√

Θ∗|||∞.

This yields that ‖(Σ̂)−1 −Θ∗‖max ≤ M‖Σ̃‖max. We have

‖Σ̃‖max ≤ 4
√

log d
n + δ with probability at least 1− c1e

−c2nδ2
for all

δ ∈ [0, 1]. This completes the proof of the bound (7).
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Proof of Proposition 11.19 (cont.)

Next we establish bounds on the estimates (Γ̂, Λ̂) defined in

Γ̂ := Tvn((Σ̂)−1) and Λ̂ := Γ̂− (Σ̂)−1.

Recalling our shorthand Y = (Σ̂)−1, by the definition of Γ̂ and the triangle
inequality, we have

‖Γ̂− Γ∗‖max ≤ ‖Y −Θ∗‖max + ‖Y − Tvn(Y)‖max + ‖Λ∗‖max

≤ M

(
4

√
log d

n
+ δ

)
+ vn +

α

d

≤ 2M

(
4

√
log d

n
+ δ

)
+

2α

d

thereby establishing inequality (4).
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Proof of Proposition 11.19 (cont.)

Turning to the operator norm bound, the triangle inequality implies that

|||Λ̂− Λ∗|||2 ≤ |||Y −Θ∗|||2 + |||Γ̂− Γ∗|||2 ≤ M

(
2

√
d

n
+ δ

)
+ |||Γ̂− Γ∗|||2.

Recall that Γ∗ has at most s-non-zero entries per row. For any index (j , k)
such that Γ∗jk = 0, we have Θ∗jk = Λ∗jk , and hence

|Yjk | ≤
∣∣Yjk −Θ∗jk

∣∣+
∣∣Λ∗jk ∣∣ ≤ M

(
4

√
log d

n
+ δ

)
+
α

d
≤ vn

Consequently Γ̂jk = Tvn (Yjk) = 0 by construction. Therefore, the error

matrix Γ̂− Γ∗ has at most s non-zero entries per row, whence

|||Γ̂− Γ∗|||2 ≤ |||Γ̂− Γ∗|||∞ = max
j=1,...,d

d∑
k=1

|Γ̂jk − Γ∗jk | ≤ s‖Γ̂− Γ∗‖max.

Putting together the pieces yields the claimed bound (5).
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